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Polyoxomolybdate-Hydrocarbon Interactions. 
Synthesis and Structure of the CH2M04O15H3- Anion 
and Related Methylenedioxymolybdates 

Sir: 

In light of the pronounced heterogeneous reactivity of mo­
lybdenum, tungsten, and vanadium oxides toward hydrocar­
bons,1 it is somewhat surprising that no polyoxoanion clusters 
of these metals are known which contain hydrocarbon moieties 
bound to their surface oxygens. A recent study of the cobalt 
molybdate catalyzed selective oxidation of propylene to 
acrolein has provided evidence indicating that the rate-deter­
mining step is desorption of acrolein from the oxide catalyst 
surface.2 As a logical starting point for the structural investi­
gation of polyoxoanion-hydrocarbon interactions, we have 
therefore examined the solution reactivity of acrolein and other 
aldehydes toward polyoxomolybdates. We report here the 
isolation and characterization of several presumably iso-
structural RCHMo4O15H3- anions (R = C2H3, H, CH3, 
QH 5 , and CF3), which contain RCH units bonded to the oxide 
surface of a tetranuclear polyoxomolybdate cluster. 

Reaction of a large excess of acrolein with [(n-C4H9)4-
N]2Mo2O7

3 in hydrated CH3CN-CH2Cl2 solution at 0 0C, 
followed by addition of ether, results in the formation of a 
precipitate which analyzes4 as [(W-C4Hg)4N]3C3H4Mo4Oi5H 
(1) after purification by reprecipitation from CH2Cl2 with 
ether at 0 0C. Since attempts to obtain compound 1 in crys­
talline form have been unsuccessful owing to its instability in 
solution,5 the structure of 1 has been inferred from a more 
stable-analogue, the formaldehyde adduct [(H-C4HQ)4N]3-
C H 2 M O 4 O I 5 H (2),6 which is easily recrystallized from 
CH2Cl2-CeH5CH3. Compounds 1 and 2 are assumed to 
contain isOstructural anions since their IR spectra display 

Figure 1. ORTEP drawing of the CH2Mo4Oi5H
3- anion as observed in 

single crystals of its (H-C4H^4N
+ salt. All nonhydrogen atoms are rep­

resented by thermal vibration ellipsoids drawn to encompass 50% of the 
electron density; the three hydrogen atoms are represented by arbitrarily 
small spheres for purposes of clarity. Molybdenum atoms are labeled with 
numbers and the 15 oxygen atoms are labeled according to the following 
scheme: A or B for the eight terminally bonded oxygens, D or E for the 
four doubly bridging oxygens, F for the two triply bridging oxygens, and 
G for the one hydroxyl oxygen. The carbon atom is designated by C and 
the hydrogen atoms by H's. The second doubly bridging OD atom is hidden 
from view. The anion approximates C21. site symmetry with C, OG, and 
Ho ideally lying on the C2 axis. 

Table I. Average Molybdenum-Oxygen Distances for the 
CH2Mo4O15H3- ion in [ (M-C 4 HQ) 4 N] 3 CH 2 MO 4 O 1 5 H 

type" distance,* A 

Mo-0Al 
MO-OBJ 
Mo-O0 

Mo-0E 

Mo-0F 

Mo-O0 

1.702(5,5, 16,8) 
1.905(5,4,4,4) 
1.924(5,3,5,4) 
2.194(5,5,9,4) 
2.456(5,24,34,4) 

a See Figure 1 for labeling scheme. h For explanation of numbers 
in parantheses, see ref 11. 

several common features: a sharp OH absorption in the 
3600-3650-cm-1 region, two C-O absorptions7 in the 990-
1100-crn-1 region, and an identical pattern of Mo-O absorp­
tions in the 550-950-cm-1 region. 

A single-crystal X-ray diffraction study8 of 2 reveals that 
the compound contains discrete CH2Mo4Oi5H3- anions (see 
Figure 1) which are structurally similar to the (CH3)2As-
Mo4O15H2- anion.9 Although the anion possesses no rigorous 
crystallographic symmetry, it approximates rather closely C2,. 
site symmetry with all four molybdenum atoms coplanar to 
within 0.004 A. As an indication of the extent to which 
chemical and structural analogies might exist between poly­
oxoanion clusters such as CH2Mo4O15H3- and solid oxide 
bound hydrocarbons, we note that the oxygen atoms are in the 
polyoxoanion approximate a hexagonal close-packed ar­
rangement. Each A layer would ideally contain two O A , two 
OB, and an adjacent OD atom while the B layer would corre­
spond to the pseudomirror plane which passes through the two 
O E , two 0 F , and the OG atoms. The CH2Mo4Oi5H3- anion 
can thus be described as having CH2 and H units bonded to 
opposite side surfaces of a close-packed oxygen array in which 
molybdenum atoms occupy octahedral interstices. Consider­
ation of bonding interactions (see Table I), however, produces 
a different description where H2CO2

2- and OH - groups are 
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connected by weak (>2.1 A) Mo-O bonds to opposite sides of 
an Mo4Oi2 ring, yielding the structural formula10 

(H2CO2
2-)(OH-KMo4Oi2). From this point of view, the 

CH2Mo4Oi5H3- anion is seen to be an acetal derivative. The 
C-O distance of 1.393 (9, 9, 9, 2) A" and the 0-C-O angle 
of 115 (1)° are accordingly in good agreement with the cor­
responding values of 1.382 (4) A and 114.3 (7)° in di-
methoxymethane.12 

If one considers the CH2Mo4O15H3- anion to be an alde­
hyde adduct, the H2CO binding site can be viewed as an 
acid-base pair site consisting of two coordinatively unsaturated 
molybdenum centers and a basic oxygen atom. In this sense, 
the mode of H2CO binding conforms to current models for 
substrate binding on solid oxide surfaces.13 There is, however, 
at present no spectroscopic evidence which indicates that al­
dehydes form surface acetals upon interaction with oxide 
surfaces. Unfortunately, the characteristic C-O IR absorptions 
for compound 1 and its analogues fall in the 990-1100-cm-i 

range usually obscured by oxide lattice absorptions, and their 
IR spectroscopic observation would in many cases be diffi­
cult.'4 IR studies of the interaction of CO2 with a-alumina 
have provided strong evidence for surface binding of the closely 
related type shown in eq I.15 It is therefore not unreasonable 

O=C=O + /Ov. 
Al Al 

O 

(Xr O'-^O 

I I 
Al Al 

(D 

to predict that H2CO should interact in a similar fashion when 
suitable acid-base pair binding sites are available. 

The formation of acetal molybdates such as compounds 1 
and 2 appears to be quite general. Hydrated acetaldehyde, 
benzaldehyde, and trifluoroacetaldehyde all react with [(n-
C4Hg)4N]2Mo2O-J to form derivatives RCHMo4O15H3- as 
tetrabutylammonium salts.16 Attempts to synthesize ketal 
derivatives R2CMo4Oi5H3- have thus far been unsuccessful. 
Reaction of hydrated acetone or hexafluoroacetone with tet­
rabutylammonium dimolybdate, for example, yields a-[(n-
C4HQ)4N]4Mos026 as the major product. Apparently, enolate 
and fluoroform formation prevail in the presence of the basic 
dimolybdate ion. We are currently examining these reactions 
in greater detail. 
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An Unusual Rearrangement of Ajaconine: An Example 
of a "Disfavored" 5-Endo-Trigonal Ring Closure 

Sir: 

The structure of ajaconine (1), the major alkaloid of the 
seeds of Delphinium ajacis and D. consolida, was established 
elegantly by Dvornik and Edwards1'2 and was correlated3 

subsequently with the known alkaloid atidine (2). Ajaconine 
was the first example of a C2n-diterpenoid alkaloid bearing an 
internal carbinolamine ether linkage (N-C-O-C) between 
C(7) and C(20). This communication reports an unusual re­
arrangement of ajaconine via a "disfavored" 5-endo-trig ring 

HO • 

X Ajaconine 2 R = O 

I t R= <v 
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